
Project ‘GAMERA’
(Semi-Powerful Console(Windows & Linux) Tools & gigabytes of English texts, downloadable from www.sanmayce.com)

WHERE THE WORD COUNTS

Caterpillar(LZSS-King of Brute-Force Heavy Sentence Dumpers, 32bit console application), revision 14+
Kazuya(LZ-Sovereign of Brute-Force Heavy Sentence Dumpers, 32bit console application), revision 17++

Salah-ed-din(GZ-Sultan of Brute-Force Heavy Sentence Dumpers, 32bit console application), revision 14++
Raccoondog(LZMA-Baron of Brute-Force Heavy Sentence Dumpers, 32bit console application), revision 17++

Yoshi(Filelist creator and more, 32bit console application), revision 06
Leprechaun(Fast and Greedy Word_Ripper, 32bit console application), revision 13++

―――

WinRAR archive in eleven 624MB volumes • Required HDD space: 6.56 GB (ready to go when extracted on D:\) • 2010 JUN 06
――

Kazuya delivers english sentences at 85-255MB/s speed(Obtained with Toshiba Satellite L305 (Intel Pentium(Merom-1M) T3400 2.16GHz))
Salah-ed-din delivers english sentences at 114-117MB/s speed(Obtained with Toshiba Satellite L305 (Intel Pentium(Merom-1M) T3400 2.16GHz))

Raccoondog delivers english sentences at 39MB/s speed(Obtained with Toshiba Satellite L305 (Intel Pentium(Merom-1M) T3400 2.16GHz))
Leprechaun rips 6,142,696++ words per second(Obtained with Toshiba Satellite L305 (Intel Pentium(Merom-1M) T3400 2.16GHz))

LBL stands for Line-By-Line(GRAMMATICAL ENGLISH LINES) i.e. sentences not merely CRLF or LF lines!
.LBL files are made from .TXT files which are made from respective .DOC, .RTF, .LIT, .PDF, .CHM, .HTM[L], .DJV[U] files;

Number and size of *.LBL files: 562,504 files(26GB or 27,991,747,152 bytes);
Lines and words in *.LBL files: 424,754,717 lines(with 4,582,451,898 words of them 9,177,221 distinct);

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 1

'Monstrous Dumpers' package, revision 13-
or

How words can be mixed into sentences!?

With this package(the main part of project "GAMERA") you can make full-text(brute-force) requests into

millions of lines(sentences). For example: make a search for *requests???????????into*
to see whether that preposition has place near on right side of "requests".

This package(a Winrar archive) is intended as shareware and contains six very fast 32bit
console text tools: Caterpillar (its rivals Raccoondog, Salah-ed-din and Kazuya),
Leprechaun, Yoshi and of course 100++ million sentences(in English language) from
various sources.

The package allows easily to create:

- a FILELIST(a text file with filenames);
- a WORDLIST(a text file with sorted distinct words);
- and as a main feature a text-pattern to be searched into LF(Unix)|CRLF(Windows) lines(or
files) via filelist and to dump resultant hits(lines or filenames) into .HTML file.

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 2

Main features:

- 26GB english-ASCII-texts converted to .LBL(same as .TXT but each line is a sentence) format;
- File-by-file listings of all texts included:
 164,128 KAZE_G.S._Corpus_'.chm'_Caterpillar.html
 16,817 KAZE_G.S._Corpus_'.djv-'_Caterpillar.html
 61,142 KAZE_G.S._Corpus_'.doc'_Caterpillar.html
 22,742,832 KAZE_G.S._Corpus_'.htm-'_Caterpillar.html
 32,717 KAZE_G.S._Corpus_'.lit'_Caterpillar.html
 1,905,255 KAZE_G.S._Corpus_'.pdf'_Caterpillar.html
 30,535 KAZE_G.S._Corpus_'.rtf'_Caterpillar.html
 27,389,047 KAZE_G.S._Corpus_'.txt'_Caterpillar.html

- [Five(*,@,#,$,%):Kazuya & Raccoondog] Wildcards(*,?) available for patterns: very
slow(pattern *underdog* took 490 seconds to look for into 400+ million sentences) but powerful;

- Fast(for laptops with a non-SSD disk)(90++MB/s) full-text traversing due to zlib used;
- Extra Fast(for laptops with a SSD disk)(200++MB/s) full-text traversing due to QuickLZ used;
- Results are delivered as screen output immediately and as pure HTML files finally;
- ‘Karp_Rabin_Kaze’(patterns *, underdog took 70 seconds to look for into 400+ million sentences) compared to

‘strstr’(85s) & ‘Boyer-Moore-Horspool’(86s) is ((85-70)/70)*100%=21% faster when running on sentences.

Installation(i.e. extracting) notes:

- Unrar in D:\ if possible, "Caterpillar.lnk", "Go to PROMPT.lnk", "Raccoondog.lnk",
"Salah-ed-din.lnk", "Kazuya.lnk" need manual adjustments if not D:\, 7GB must be free.

- To use "Caterpillar.lnk" and "Salah-ed-din.lnk" and "Kazuya.lnk" must run (R2O.BAT) and
(R2G.BAT) and (R2L.BAT) respectively.

Current revisions of tools:

- EXEs(Windows):
 Caterpillar r.14+
 Leprechaun r.13++
 Yoshi r.06
 Salah-ed-din r.14++
 Raccoondog r.17++
 Kazuya r.17++ r.15 has an ability to search non-compressed files too!

- ELFs(Linux):
 Caterpillar r.14+
 Leprechaun r.13++
 Yoshi r.06
 Salah-ed-din r.14+

Note1: Revisions 14++ are Experimental(but operational, not beta) Karp-Rabin function with my hash, see last page.
Note2: Predecessor of Caterpillar, Salah-ed-din & Raccoondog was Kazuya(with more functionality and critical

parts written in 16bit assembler), someday I will resurrect him in 64bit.

Convert at will:

Use G2R.BAT for .gz -> .lzma (1000+ minutes needed to convert, grmbl)
Use R2G.BAT for .lzma -> .gz (11:05 PM - 12:18 AM i.e 73 minutes needed to convert)
Use R2L.BAT for .lzma -> .Lasse (06:57 PM - 07:45 PM i.e 48 minutes needed to convert)
Use R2O.BAT for .lzma -> .Okumura (11:33 PM - 01:22 AM i.e 109 minutes needed to convert)

Some experience(Machine: Toshiba Satellite L305 - Intel Pentium Dual CPU T3400 @ 2.16GHz):

- Caterpillar uses LZSS(based on LZSS.C written by H.Okumura) compression;
 24.9GB -> 11.4 GB (12,341,932,922 bytes);
 delivering text at 82KB(149KB when in system cache)/clock i.e. 80MB/s;
 suitable for FAST HDDs 80+MB/s.

- Raccoondog uses LZMA(based on LZMA SDK 4.65 written by I.Pavlov) compression;
 24.9GB -> 5.5 GB (5,944,631,607 bytes);
 delivering text at 40KB(bottleneck is CPU power alone)/clock i.e. 39MB/s;
 suitable for flash cards like CFs, SDs.

- Salah-ed-din uses GZ(based on zlib 1.2.3 written by J.Gailly and M.Adler) compression;
 24.9GB -> 8.4 GB (9,051,049,655 bytes);
 delivering text at 117KB(120KB when in system cache)/clock i.e. 114MB/s;
 suitable for FAST CPUs 3+GHz.

- Kazuya uses LZ(based on QuickLZ 1.4.0 written by Lasse Reinhold) compression;
 24.9GB -> 10.6 GB (11,402,975,168 bytes);
 delivering text at 88KB(262KB(118KB(EN)) when in system cache)/clock i.e. 85MB/s;
 suitable for FAST SSDs 115+MB/s. Near future dreams: CPU(2x faster) and SSD(2x115Mb/s read) will give 2x255Mb/s.

Search|Seek|Find in order to Explore|Learn|Avoid Different Styles:

["Супруга съм на три деца. С чувекъ сбрахме пари и купихми триустаен партамент. Една вечер звъни вратата. Звънецъ чука.
Отварям - НИНДЖА. И без да каже нищо, с карате в бъбреците. Дукат съ усета ми би два шамара с КРАК и един на детето в
гръбначнийъ кош! От ударната вълна отльитам на 20-30 метра. Абстрахираха децата. А чувекъ го нема. Ако общината в града
не вземе спешни мерки, ще се самуубеся ильи ще изчезна безкрайно."]

/Интервю с ромка излъчено по КАНАЛ 1 за акция на НСБОП по залавяне на опасни рецидивисти в Пазарджишко./

Enjoy!

Sanmayce ’Kaze’, 2009 Mar 13.

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 3

D:_KAZE_G.S._Corpus>yoshi
Yoshi(Filelist Creator), revision 06, written by Svalqyatchx,
in fact based on SWEEP.C from 'Open Watcom Project', thanks-thanks.

Note1: So far, it works for current directory only.
Note2: Default method is depth-first traversal;
 may use pipe 'Yoshi|sort' for breadth-first_like traversal results.
Note3: Make notice that '*.*'(extensionfull only) is not equal to '*'(all);
 one disadvantage is an inability to list only extensionless filenames.
Note4: Search is case-insensitive as-must.
Note5: This revision allows multiple '*', and meaning of masks is:
 '?' - any character AND NOT EMPTY(default, for OR EMPTY see option -e);
 '*' - any character(s) or empty.
Note6: What is a .LBL(LineByLine) file?
 it is a bunch of GRAMMATICAL lines not mere LF or CRLF lines;
 it contains not symbols under 32(except CR and LF) and above 127;
 it contains not space symbol sequences.
Usage:
 Yoshi [option(s)] [filename(s)]
 option(s):
 -v i.e. verbose mode; output goes to console;
 -f i.e. fullpath mode for output;
 -e i.e. treat '?' as any character OR EMPTY;
 -t i.e. touch all encountered files;
 -2 i.e. convert all encountered .TXT files to .LBL files;
 -o<filename> i.e. output goes to file(in append mode).
 filename(s):
 Wildcards '*' and wildcards '?' are allowed i.e. "str*.c??";
 default filename is '*'; DO NOT FORGET TO PUT
 filename(s) WITH WILDCARD(S) INTO QUOTE MARKS!
Examples:
 Yoshi -v -f -oCaterpillar_NON.lst "*.lbl" "*.txt" "*.htm" "*.html"
 Yoshi -f -oMyEbooks.txt "*wiley*essential*.pdf" "*russian*.*htm"

Yoshi: Total size of files: 00,027,750,342,332 bytes.
Yoshi: Total files: 000,000,001,088.
Yoshi: Total folders: 0,000,000,003.

D:_KAZE_G.S._Corpus>"Leprechaun_r13++_32bits.exe"
Leprechaun(Fast Greedy Word-Ripper), revision 13++, written by Svalqyatchx.
Leprechaun: 'Oh, well, didn't you hear? Bigger is good, but jumbo is dear.'
Kaze: Let's see what a 4-way hash + 6,602,752 Binary-Search-Trees can give us,
 also the performance of a 4-way hash + 6,602,752 B-Trees of order 3.

'The Little Monster' short notes:
Note1: I wish to thank to R.N. Horspool, Ranjan Sinha, Dmitry Shkarin,
 Michael Abrash, J. Bentley, R. Sedgewick, Igor Pavlov, Lasse Reinhold
 for sharing their knowledge to public.
Note2: Run it without parameters to get usage and short notes.
Note3: This simple amateurish(more over I am not versed well neither in C nor
 in mathematics nor in english language, but I am persistent in INDEXING
 GBs of english TEXTS) tool is written in ANSI C(at least its source is
 compileable for CL(Windows) and GCC(Linux)), and its purpose is to
 create a WordList for a group of files(given via filelist).
 Its name comes(according to Heritage Dictionary) from 'low corpus' or
 'little body', in fact from amazing movie saga 'Leprechaun 1-2-3-4-5-6'
 starring by Warwick Davis.
Note4: Only words up to 31 chars are proceeded - the reason is 'DDT'(the
 longest word in Heritage Dictionary 3rd edition) or
 'dichlorodiphenyltrichloroethane'.
Note5: Cursor hiding in C - mission impossible for me.
Note6: By default(third parameter is 1023) allocated memory is 393MB.
 Due to 'malloc()' limitation under WINDOWS, maximum value of third
 parameter is 5174 which is 1988MB allocated block.
Note7: File Leprechaun.LOG is a log, where new statistics are appended.
Note8: Revision 12+ can handle files larger than 4GB.
Note9: Revision 12++ has a buffered 'fread()' - therefore I/O READ-BURST SPEED
 is the first(worst) bottleneck, as a result r.12++ is much-much faster;
 the second(worse) bottleneck: the linked lists - the b-trees
 might be the answer; the third(bad) bottleneck: the amateurish author.
NoteA: Revision 12+++ has an improved(2 bits were used doltishly) main hash
 function - therefore less collisions, for example:
 for file 'wikipedia-de-html.tar' 42,291,855,360 bytes with
 5,750,179,678 words of them 7,375,373 distinct attempts to Find/Put
 a WORD into a linked list are 6,117,675,470(r.12++) and 5,845,989,790
 (r.12+++); also two 'if' sections were moved because they were executed
 unnecessarily many times.
NoteB: Revision 13 uses BSTs instead of LLs, that is Linked-Lists were
 replaced by Binary-Search-Trees, as a result for 22,202,980 distinct
 words(out of 35,271,297) r.12+++ needs 225,548,268 total attempts to
 Find/Put WORDs into linked lists where r.13 needs 121,674,042 total
 attempts to Find/Put WORDs into Binary-Search-Trees. But this is a
 significant boost in performance only for wordlists of million words.
NoteC: Revision 13+ gives only more statistics. Future revisions could lessen
 number of attempts to Find/Put WORDs into Binary-Search-Trees
 furthermore by making them at some point Perfectly-Balanced. But
 for huge amount(multi-(m|b)illion) of distinct words the b-tree family
 must come in, until then this is the leprechaunish niche.
NoteD: Revision 13++ has a little fix(2 unnecessary ZEROings, when a new word
 is inserted, were deleted) and a fixed bug(13+ adds stupidly the
 highest BST to the wordlist). Also B-Tree of order 3 is added as a
 searching method. Main goal of B-Tree is to reduce number of
 comparisons but at nasty cost: a precious time wasted to construct it
 and twice more memory, i.e. one step forward two backward: this tree is
 more effective than BST in cases of 2++ billion/million
 different/distinct words.
 The improvement which comes from using B-Tree of order 3 is about 200%
 much more pleasing than I expected, for wikipedia-en-html.tar.wrd with
 12,561,874 distinct words Total Attempts to Find/Put WORDs into:
 Binary-Search-Trees was 61,895,043 while for
 B-trees order 3 was 19,295,791.
NoteE: For old r.12+ a USB connected HDD crippled test:
 for 'H:\>Leprechaun.exe static.wikipedia.org_downloads_2008-06_en.lst
 wikipedia-en-html.tar.wrd 5400'
 where 223,674,511,360 wikipedia-en-html.tar
 on laptop Toshiba Pentium T3400 2166 MHz with
 Motherboard Name: Toshiba Satellite L305
 CPU Type: Mobile DualCore Intel Pentium, 2166 MHz (13 x 167)
 CPU Alias: Merom-1M
 L1 Code Cache: 32 KB per core
 L1 Data Cache: 32 KB per core
 L2 Cache: 1 MB (On-Die, ECC, ASC, Full-Speed)

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 4

 Bus Type: Dual DDR2 SDRAM
 Bus Width: 128-bit
 Real Clock: 333 MHz (DDR)
 Effective Clock: 666 MHz
 EVEREST v5.00.1650 Memory Copy: 3725MB/s with timings 5-5-5-13
 result is logged to 'Leprechaun.LOG':
 Bytes per second performance: 20,658,955B/s
 Words per second performance: 2,860,880W/s
 Input File with a list of TEXTual Files:
 static.wikipedia.org_downloads_2008-06_en.lst
 Size of all TEXTual Files: 223,674,511,360
 Word count: 30,974,750,142 of them 12,561,874 distinct
 Number Of Files: 1
 Number Of Lines: 2088618575
 Allocated memory in MB: 1920
 Words with length 01 occupy 0,033KB of 0,349KB given i.e. 09% utilization
 Words with length 02 occupy 0,033KB of 0,349KB given i.e. 09% utilization
 Words with length 03 occupy 0,037KB of 0,697KB given i.e. 05% utilization
 Words with length 04 occupy 0,151KB of 0,871KB given i.e. 17% utilization
 Words with length 05 occupy 0,744KB of 1,568KB given i.e. 47% utilization
 Words with length 06 occupy 1,470KB of 3,136KB given i.e. 46% utilization
 Words with length 07 occupy 2,605KB of 5,923KB given i.e. 43% utilization
 Words with length 08 occupy 3,296KB of 6,968KB given i.e. 47% utilization
 Words with length 09 occupy 3,714KB of 6,968KB given i.e. 53% utilization
 Words with length 10 occupy 3,483KB of 6,968KB given i.e. 49% utilization
 Words with length 11 occupy 3,235KB of 5,923KB given i.e. 54% utilization
 Words with length 12 occupy 2,691KB of 4,181KB given i.e. 64% utilization
 Words with length 13 occupy 2,230KB of 3,484KB given i.e. 64% utilization
 Words with length 14 occupy 1,718KB of 3,484KB given i.e. 49% utilization
 Words with length 15 occupy 1,357KB of 2,613KB given i.e. 51% utilization
 Words with length 16 occupy 1,063KB of 2,613KB given i.e. 40% utilization
 Words with length 17 occupy 0,814KB of 1,742KB given i.e. 46% utilization
 Words with length 18 occupy 0,617KB of 1,742KB given i.e. 35% utilization
 Words with length 19 occupy 0,485KB of 1,742KB given i.e. 27% utilization
 Words with length 20 occupy 0,402KB of 1,742KB given i.e. 23% utilization
 Words with length 21 occupy 0,327KB of 1,742KB given i.e. 18% utilization
 Words with length 22 occupy 0,274KB of 1,742KB given i.e. 15% utilization
 Words with length 23 occupy 0,224KB of 1,394KB given i.e. 16% utilization
 Words with length 24 occupy 0,190KB of 1,394KB given i.e. 13% utilization
 Words with length 25 occupy 0,162KB of 1,394KB given i.e. 11% utilization
 Words with length 26 occupy 0,136KB of 1,220KB given i.e. 11% utilization
 Words with length 27 occupy 0,119KB of 1,046KB given i.e. 11% utilization
 Words with length 28 occupy 0,107KB of 0,871KB given i.e. 12% utilization
 Words with length 29 occupy 0,091KB of 0,697KB given i.e. 13% utilization
 Words with length 30 occupy 0,080KB of 0,523KB given i.e. 15% utilization
 Words with length 31 occupy 0,076KB of 0,523KB given i.e. 14% utilization
 Total pseudo(including hash table) memory utilization: 42%
 Total real(wordlist's words VS allocated block) memory utilization: 60/1000
 Used value for third parameter in KB: 5400
 Use next time as third parameter: 3475-
 Time for making unsorted wordlist: 10827 second(s)
 Time for sorting unsorted wordlist: 10 second(s)

Usage: Leprechaun InFile OutFile [BufferSize] [SortMethod] [TreeMethod]
 <InFile>: Input file with files for Leprechauning, in WINDOWS console
 you can create it by 'E:\KAZEHOME>dir *.txt/s/b>Leprechaun.lst'
 <OutFile>: Output WORDLIST(sorted since r.9, CRLF) file
 <BufferSize>: Optional Dynamic RAM buffer in KB, default(and minimum
 in the same time) is 1023, i.e. omit or specify greater one
 <SortMethod>: Optional Sort Method, default is 'D',
 A - InsertionSort
 B - InsertionX26Sort
 C - MultiKeyQuickSortSort by J. Bentley, R. Sedgewick
 D - MultiKeyQuickSortX26Sort' by J. Bentley, R. Sedgewick
 <TreeMethod>: Optional Tree Method, default is 'X',
 X - Binary-Search-Trees
 Y - B-Trees of order 3

Have a nice Leprechauning.
For contacts: sanmayce@hotmail.com
Sanmayce Svalqyatchx 'Kaze', 2005 Feb 07(rev.13++: 2010 Apr 12).

D:_KAZE_G.S._Corpus>Caterpillar
Caterpillar(Sentence_Dumper), revision 14+, written by Svalqyatchx,
in fact adapted from Haruhiko Okumura's excellent LZSS.C program.

 How near are these words_forms to me: Masakari, Massacre, Steel-Coloss,
Monster-Truck, Dump-Mining-Truck, Caterpillar 797, Liebherr, Komatsu. They
resemble one thing: strong-devoid-of-ambition-power(i.e. a pure work/time).

 'Caterpillar' is a simple pattern searcher(from 'Masakari' family tools)
into archived english-text files, designed to achieve up to 90% higher read
speed than the HDD READ BURST i.e. 'copy hugefile nul' gaining at same time
50% compression of searched data.

 Its main feature is somewhat hidden nowadays, because of
pseudo-transparent decompression used, which leads to doubling(unreachable in
fact) uploaded data for search function(written by N. Horspool, thanks a lot)
due to LZSS algorithm implemented by H. Okumura(greetings to him). Okumura's
variant(HDD2RAM) which is much faster(!!!) and needs less memory than tuned
memory-to-memory decompression(RAM2RAM) variant. I am still stunned.

 In few words: feeding search function is 100-% faster with very fast
CPU-Physical_RAM subsystems, in this way reducing the ugly penalty which comes
from reading a HDD. In numbers: me IDE HITACHI 7200rpm 2MB gives up to 60MB/s
READ BURST, 'Caterpillar' almost doubles(i.e. 120-MB/s) it in case of 3+++GHz
CPU and 533+++MHz RAM.

 For Windows 2003, VIA KT600, AMD XP 2500+(1836.12MHz=11x166.92MHz),
FSB 333.84MHz(2x166.92MHz), 512KB L2 cache, 1 DIMM DDR 512MB 333MHz(2x166MHz),
Caterpillar(in fact LZSS) decompresses 58,000KB per second i.e.
boost is negative: 60MB/s=61,440KB/s(READ BURST) is greater than 58,000KB/s.
But for two times faster CPU-RAM sub-system(SERVER) than described above OR
for two times slower HDD sub-system(LAPTOP) boost will be positive:
(1 - READ BURST SPEED / DECOMPRESSION SPEED) * READ BURST SPEED or
(1 - (61,440KB/s) / (2 * 58,000KB/s)) * 61,440KB/s = (0.471) * 61,440KB/s.

 Since revision 5 'fread()' was changed with 'read()', for speed.

'The Monster-Dump-Truck' short notes:
Note1: Thanks a lot to N. Horspool, Dmitry Shkarin, H. Okumura, Igor Pavlov.
Note2: Run it without parameters to get usage and short notes.

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 5

Note3: Current revision searches only for case-sensitive and unexact matches.
Note4: This simple amateurish(more over I am not versed well neither in C nor
 in mathematics nor in english language, but I am persistent in INDEXING
 GBs of english TEXTS) tool is written in ANSI C(at least its source is
 compileable for CL(Windows) and not yet for GCC(Linux) because of
 'O_BINARY in open(), gets(), getch(), kbhit()', and its purpose is to
 create a SentenceList for a group of compressed(with it) text files(LF
 and CRLF) given via filelist.
 Its name comes from a heavy-nopride-dumper-truck 'Caterpillar'.
Note5: By default allocated memory is 95MB i.e. decoding is HDD2RAM.
Note6: Disastrous performance in case 95MB|147MB not fully physical!
Note7: For me digital library:
 where files are 54, ENcoded 6,917,425,566, DEcoded 14,419,485,826
 with Windows XP, VIA KT600, AMD XP 2500+(1836.12MHz=11x166.92MHz),
 FSB 333.84MHz(2x166.92MHz), 512KB L2 cache, DDR 512MB 333MHz(2x166MHz),
 IDE HDD Maxtor 80GB 7200 8MB and
 'D:\temp>dir E:\KAZEHOME\KAZUYA.O??/b>Caterpillar.lst'
 'D:\temp>Caterpillar Caterpillar.lst CaterpillarRAM2RAM.ini'
 result is: 282 seconds or 41000KB/s upload, 11000KB/s boost,
 52000KB/s boosted upload, 56000KB/s decode.
 'D:\temp>Caterpillar Caterpillar.lst CaterpillarHDD2RAM.ini'
 result is: 142 seconds or 99000KB/s boosted upload!!!
Note8: Matches(hits) containing neither '<' nor '>' are written
 to 'Caterpillar.hits.pattern?.html' file.
Note9: Works both on UNIX(LF) and Windows(CRLF) text files.
NoteA: Never forget the importance of defragmented_AND_grouped files located at
 fastest area of disk - first partition is faster than second one, etc.
NoteB: In ANSI, clock is defined as '#define CLOCKS_PER_SEC 1000'.
NoteC: Since Caterpillar 13++:
 - limits(just skip longer ones) lines to 960 chars; OTHERWISE: HUGE TIME
 DELAYS due to recursive function;
 - shows hits to console too; MORE VIVID;
NoteD: During execution hitting a 'Esc' causes termination(i.e. skipping rest).
NoteE: At last NON-ENCODED regime has two modes: in addition to LINE(i.e.
 hits are lines) there is a FILE(i.e. hits are filenames) mode.
NoteF: For all regimes files Caterpillar.HIT?.lst are created for each
 pattern(1,2,3 and 4) - containing hits filelist i.e. filenames
 containing HITS(either LINEs or FILENAMEs).

Below is LINE(default for DECODING ???2RAM regimes) mode pattern description:
Pattern(s) note: You may specify(four times) a main-pattern(case insensitive
 with wildcards '*' i.e. any character(s) or empty and '?'
 i.e. any character or empty) with three nested-patterns(case
 sensitive and unexact), all four connected with AND.
 Due to different line endings(CRLF in Windows; LF in UNIX)
 you must add a '?' wildcard in place of CR: for example in
 case of searching for '*.pdf' write '*.pdf?'.
Pattern(s) example: Pattern1: *take? *it*
 Pattern1_NestedPattern1: you
 Possible hit: ... your reason is so taken by It.

Usage: 'Caterpillar e file1 file2' encodes file1 into file2
 'Caterpillar d file2 file1' decodes file2 into file1
 'Caterpillar m ListOfFilesFile SolidSize'
 <ListOfFilesFile>: Files to be merged into Caterpillar.??? files
 <SolidSize>: Caterpillar.??? files size limit in MB.
 'Caterpillar ListOfFilesFile [OptionsFile]'
 <ListOfFilesFile>: Input file with files for Caterpillaring
 <OptionsFile>: Optional input file with options with following format:
 Optional line #1 contains method of decoding:
 'DECODING HDD2RAM' | 'DECODING RAM2RAM' | 'NON-ENCODED'
 'NON-ENCODED' allocates 95MB, size of biggest file must be lower;
 'DECODING HDD2RAM' needs less physical memory(95MB) but is faster!
 'DECODING RAM2RAM' needs more physical memory(147MB) but is slower!
 Optional line #2 contains terminal hits:
 '0' | 'long integer'
 '0' means all hits are needed
 'long integer' means reaching this value termination follows
 Optional line #3 contains Pattern1: 'string'
 if 'string' is specified then input from keyboard arise not
 if 'string' is not specified then input from keyboard arise
 Optional line #4 contains Pattern1_NestedPattern1: 'string'
 Optional line #5 contains Pattern1_NestedPattern2: 'string'
 Optional line #5 contains Pattern1_NestedPattern3: 'string'
Note1: One useful way to make 'ListOfFilesFile=Caterpillar_NON.lst' is next:
D:\Caterpillar>copy con MAKElst.bat
@echo off
dir Caterpillar_tree*.lbl /s/b>Caterpillar_NON.lst
dir Caterpillar_tree*.txt /s/b>>Caterpillar_NON.lst
echo.
F6

Have a nice Caterpillaring.
For contacts: sanmayce@hotmail.com
Sanmayce Svalqyatchx 'Kaze', 2009 Jan 29.

D:_KAZE_G.S._Corpus>Raccoondog.exe

LZMA Utility 4.65 : Igor Pavlov : Public domain : 2009-02-03

Usage: lzma <e|d> inputFile outputFile
 e: encode file
 d: decode file

D:_KAZE_G.S._Corpus>Raccoondog -SA4 Raccoondog.lst
Raccoondog(LZMA Sentence_Dumper), revision 17++, written by Svalqyatchx,
in fact adapted from Igor Pavlov's excellent LZMA 4.56 SDK.

Usage1: Raccoondog [-SA1|-SA2|-SA3|-SA4] filename
 Decodes all files from a list(filename)
 -SA1 : Brute_Force Search Algorithm
 -SA2 : Quick_Boyer_Moore Search Algorithm
 -SA3 : SMITH_Boyer_Moore Search Algorithm
 -SA4 : Karp_Rabin_Kaze Search Algorithm
 Default is HORSPOOL_Boyer_Moore Search Algorithm
Usage2: Raccoondog <e|d> inputFile outputFile
 e: encode file
 d: decode file
Example1: Raccoondog Raccoondog.lst
Example2: Raccoondog -SA2 Raccoondog.lst
Example3: Raccoondog e Caterpillar.001.txt Caterpillar.001.txt.lzma
Note1: Benchmark:

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 6

 Raccoondog(EN:8KB/clock, DE:39KB/clock) for 24.9GB(5.53GB LZMA) texts.
 Me machine is:
 Motherboard Name: Toshiba Satellite L305
 CPU Type: Mobile DualCore Intel Pentium, 2166 MHz (13 x 167)
 CPU Alias: Merom-1M
 L1 Code Cache: 32 KB per core
 L1 Data Cache: 32 KB per core
 L2 Cache: 1 MB (On-Die, ECC, ASC, Full-Speed)
 Bus Type: Dual DDR2 SDRAM
 Bus Width: 128-bit
 Real Clock: 333 MHz (DDR)
 Effective Clock: 666 MHz
Note2: Disastrous performance in case 128MB not fully physical!
Note3: Matches(hits) are overwritten to Raccoondog.hits.Pattern?.html files.
Note4: Works both on UNIX(LF) and Windows(CRLF) text files.
Note5: Never forget the importance of defragmented_AND_grouped files located at
 fastest area of disk - first partition is faster than second one, etc.
Note6: In ANSI, clock is defined as '#define CLOCKS_PER_SEC 1000'.
Note7: Since Raccoondog 13++:
 - limits(just skip longer ones) lines to 960 chars; OTHERWISE: HUGE TIME
 DELAYS due to recursive function;
 - shows hits to console too; MORE VIVID;
Note8: Since Raccoondog 14:
 - No deletion of input file after compressing/decompressing;
Note9: During execution hitting a 'Esc' causes termination(i.e. skipping rest).
NoteA: The two examples below show the need of one additional wildcard in
 order to match CR for Windows texts; end of line is LF(as in UNIX):
 Pattern(s) example: Pattern1: ########%
 Pattern1_NestedPattern1:
 Possible hit: NEW YORK
 Pattern(s) example: Pattern1: $$$$$$$$@
 Pattern1_NestedPattern1:
 Possible hit: Printing

Pattern(s) note: You may specify(four times) a main-pattern(case insensitive
 with wildcards '*' i.e. any character(s) or empty, also '@'
 i.e. any character or empty, also '#' i.e. any character
 and not empty, also '$' i.e. any ALPHA character
 and not empty, also '%' i.e. any NON-ALPHA character
 and not empty) with three nested-patterns(case
 sensitive and unexact), all four connected with AND.
 Due to different line endings(CRLF in Windows; LF in UNIX)
 you must add a '@' wildcard in place of CR: for example in
 case of searching for '*.pdf' write '*.pdf@'.
Pattern(s) example: Pattern1: *%take@%$$@
 Pattern1_NestedPattern1:
 Possible hit: ... is taken by
 Possible hit: ... would take it
 Note: First % is to avoid e.g. 'mis' prefix
 Second % is to avoid e.g. 'ing' suffix
Master-pattern note: It is case insensitive with wildcards '*','@','#','$','%'
 allowed. The purpose of this pattern is to
 decide whether a search for next patterns will be
 executed, it is applied on all lines i.e. the whole file.
 There must be at least one hit in order to execute search
 for next patterns.

Have a nice Raccoondoging.
For contacts: sanmayce@hotmail.com
Sanmayce Svalqyatchx 'Kaze', 2010 Jun 06.

Allocated memory for DEcoded file in MB: 256
Size of input file with files for Raccoondoging: 9669

Input Master-pattern(hit only 'Enter' to skip):
Input Pattern1(hit only 'Enter' to skip): *not anymore*
- Input Pattern1_NestedPattern1(hit only 'Enter' to skip):
Input Pattern2(hit only 'Enter' to skip):
Processing .\Caterpillar.001.RAFT2.txt.lzma ...
Doing DECODE from HDD to RAM ...
Overall decode performance so far: 000,007KB/clock(EN) or 000,031KB/clock(DE)
Doing SEARCH for Pattern1 at once and flushing hit-sentences ...
000,000,001 It used to be just "the living room," but not anymore.
000,000,002 But not anymore.
Found 2 case-insensitive and unexact matches(hits), so far.
'Esc' was pressed, so skip the rest files and quit!

Total Rough Upload and Decode time: 2,297 clocks
Total Rough Search time: 1,719 clocks
Total time: 4 seconds
Total Lines encountered: 1,150,388
Total Search(non-mask) function invocations: 0
Total Search(MASK i.e. wildcard) function invocations: 1,149,075
Total MASK i.e. wildcard invocations: 1,149,075
Total MASK i.e. wildcard hits: 2
Total MASK i.e. wildcard time: 1,434 clocks
Total MASK i.e. wildcard performance: 46KB/clock
Total BoyerMooreHorspool invocations: 0
Total BoyerMooreHorspool(whole chunks, not lines) hits: 0
Total BoyerMooreHorspool(whole chunks, not lines) time: 0 clocks
Total KarpRabinKaze invocations: 0
Total KarpRabinKaze(whole chunks, not lines) hits: 0
Total KarpRabinKaze(whole chunks, not lines) time: 0 clocks
Raccoondog: Done successfully.

D:_KAZE_G.S._Corpus>Salah-ed-din -SA4 Salah-ed-din.lst
Salah-ed-din(Sentence_Dumper), revision 14++, written by Svalqyatchx,
in fact adapted from Mark Adler's and Jean-loup Gailly's ZLIB package.

Usage1: Salah-ed-din [-SA1|-SA2|-SA3|-SA4] filename
 Decodes all files from a list(filename)
 -SA1 : Brute_Force Search Algorithm
 -SA2 : Quick_Boyer_Moore Search Algorithm
 -SA3 : SMITH_Boyer_Moore Search Algorithm
 -SA4 : Karp_Rabin_Kaze Search Algorithm
 Default is HORSPOOL_Boyer_Moore Search Algorithm
Usage2: Salah-ed-din [-d] [-f] [-h] [-r] [-1 to -9] [files...]
 -d : decompress
 -f : compress with Z_FILTERED
 -h : compress with Z_HUFFMAN_ONLY
 -r : compress with Z_RLE
 -1 to -9 : compression level

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 7

Example1: Salah-ed-din Salah-ed-din.lst
Example2: Salah-ed-din -SA2 Salah-ed-din.lst
Example3: Salah-ed-din -f -6 Caterpillar.001.txt
Example4: Salah-ed-din -d Caterpillar.001.txt.gz
Note1: Benchmark:
 Raccoondog(EN:39KB/clock, DE:117KB/clock) for 24.9GB(8.42GB GZ) texts.
 Me machine is:
 Motherboard Name: Toshiba Satellite L305
 CPU Type: Mobile DualCore Intel Pentium, 2166 MHz (13 x 167)
 CPU Alias: Merom-1M
 L1 Code Cache: 32 KB per core
 L1 Data Cache: 32 KB per core
 L2 Cache: 1 MB (On-Die, ECC, ASC, Full-Speed)
 Bus Type: Dual DDR2 SDRAM
 Bus Width: 128-bit
 Real Clock: 333 MHz (DDR)
 Effective Clock: 666 MHz
Note2: Disastrous performance in case 128MB not fully physical!
Note3: Matches(hits) are overwritten to Salah-ed-din.hits.Pattern?.html files.
Note4: Works both on UNIX(LF) and Windows(CRLF) text files.
Note5: Never forget the importance of defragmented_AND_grouped files located at
 fastest area of disk - first partition is faster than second one, etc.
Note6: In ANSI, clock is defined as '#define CLOCKS_PER_SEC 1000'.
Note7: Since Salah-ed-din 13++:
 - limits(just skip longer ones) lines to 960 chars; OTHERWISE: HUGE TIME
 DELAYS due to recursive function;
 - shows hits to console too; MORE VIVID;
Note8: Since Salah-ed-din 14:
 - No deletion of input file after compressing/decompressing;
Note9: During execution hitting a 'Esc' causes termination(i.e. skipping rest).

Pattern(s) note: You may specify(four times) a main-pattern(case insensitive
 with wildcards '*' i.e. any character(s) or empty and '?'
 i.e. any character or empty) with three nested-patterns(case
 sensitive and unexact), all four connected with AND.
 Due to different line endings(CRLF in Windows; LF in UNIX)
 you must add a '?' wildcard in place of CR: for example in
 case of searching for '*.pdf' write '*.pdf?'.
Pattern(s) example: Pattern1: *take? *it*
 Pattern1_NestedPattern1: you
 Possible hit: ... your reason is so taken by It.

Have a nice Salah-ed-dining.
For contacts: sanmayce@hotmail.com
Sanmayce Svalqyatchx 'Kaze', 2009 Feb 22.

Allocated memory for DEcoded file in MB: 96
Size of input file with files for Salah-ed-dining: 8680
Pattern(s) note: You may specify(four times) a main-pattern(case insensitive
 with wildcards '*' i.e. any character(s) or empty and '?'
 i.e. any character or empty) with three nested-patterns(case
 sensitive and unexact), all four connected with AND.
 Due to different line endings(CRLF in Windows; LF in UNIX)
 you must add a '?' wildcard in place of CR: for example in
 case of searching for '*.pdf' write '*.pdf?'.
Pattern(s) example: Pattern1: *take? *it*
 Pattern1_NestedPattern1: you
 Possible hit: ... your reason is so taken by It.

Input Pattern1(hit only 'Enter' to skip): *not anymore*
- Input Pattern1_NestedPattern1(hit only 'Enter' to skip):
Input Pattern2(hit only 'Enter' to skip):
Processing .\Caterpillar.001.RAFT3.txt.gz ...
Doing DECODE from HDD to RAM ...

Salah-ed-din decoded buffer size: 99,614,459
Overall decode performance so far: 000,033KB/clock(EN) or 000,102KB/clock(DE)
Doing SEARCH for Pattern1 at once and flushing hit-sentences ...
000,000,001 M: Not anymore.
000,000,002 M: Not anymore.
000,000,003 "Not anymore," Lidia replied.
000,000,004 Not anymore.
000,000,005 Not anymore.
000,000,006 "Not anymore," Lidia replied.
000,000,007 Not anymore.
000,000,008 Not anymore.
000,000,009 "Not anymore," Lidia replied.
000,000,010 Not anymore.
000,000,011 Not anymore.
Found 11 case-insensitive and unexact matches(hits), so far.
'Esc' was pressed, so skip the rest files and quit!

Total Rough Upload and Decode time: 953 clocks
Total Rough Search time: 1,907 clocks
Total time: 3 seconds
Total Lines encountered: 1,835,098
Total Search(non-mask) function invocations: 0
Total Search(MASK i.e. wildcard) function invocations: 1,834,650
Total Boyer-Moore-Horspool(whole chunks, not lines) hits: 0
Total Boyer-Moore-Horspool(whole chunks, not lines) time: 0 clocks
Total Karp_Rabin_Kaze(whole chunks, not lines) hits: 0
Total Karp_Rabin_Kaze(whole chunks, not lines) time: 0 clocks
Salah-ed-din: Done successfully.

D:_KAZE_G.S._Corpus>Kazuya.exe/?
Kazuya(LZ Sentence_Dumper), revision 17++, written by Svalqyatchx,
in fact adapted from Lasse Reinhold's excellent QuickLZ 1.4.0 library,
in fact adapted from Ariya Hidayat's sub-excellent FastLZ 0.1.0 library,
in fact adapted from Markus F.X.J. Oberhumer's sub-excellent LZO 2.03 library,
in fact adapted from Haruhiko Okumura's sub-excellent LZSS 4/6/1989 library.

Usage1: Kazuya [-sa1|-sa2|-sa3|-sa4|-SA1|-SA2|-SA3|-SA4
 |-sA1|-sA2|-sA3|-sA4|-Sa1|-Sa2|-Sa3|-Sa4|-krknd] filename
 Decodes all files from a list(filename)
 -sa1 : QuickLZ Decode + Brute_Force Search Algorithm
 -sa2 : QuickLZ Decode + Quick_Boyer_Moore Search Algorithm
 -sa3 : QuickLZ Decode + SMITH_Boyer_Moore Search Algorithm
 -sa4 : QuickLZ Decode + Karp_Rabin_Kaze Search Algorithm
 -SA1 : LZO Decode + Brute_Force Search Algorithm
 -SA2 : LZO Decode + Quick_Boyer_Moore Search Algorithm
 -SA3 : LZO Decode + SMITH_Boyer_Moore Search Algorithm
 -SA4 : LZO Decode + Karp_Rabin_Kaze Search Algorithm

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 8

 -sA1 : FastLZ Decode + Brute_Force Search Algorithm
 -sA2 : FastLZ Decode + Quick_Boyer_Moore Search Algorithm
 -sA3 : FastLZ Decode + SMITH_Boyer_Moore Search Algorithm
 -sA4 : FastLZ Decode + Karp_Rabin_Kaze Search Algorithm
 -Sa1 : OkumuraLZ Decode + Brute_Force Search Algorithm
 -Sa2 : OkumuraLZ Decode + Quick_Boyer_Moore Search Algorithm
 -Sa3 : OkumuraLZ Decode + SMITH_Boyer_Moore Search Algorithm
 -Sa4 : OkumuraLZ Decode + Karp_Rabin_Kaze Search Algorithm
 -krknd : Karp_Rabin_Kaze Search Algorithm, but with no additional
 chunk-searches overhead and without decompression of
 incoming files i.e. pure text is uploaded
 Default is QuickLZ Decode + HORSPOOL_Boyer_Moore Search Algorithm
Usage2: Kazuya <e|d|E|D|A|R|a|r> inputFile outputFile
 e: encode QuickLZ file
 d: decode QuickLZ file
 E: encode LZO file
 D: decode LZO file
 A: encode(archive) FastLZ file
 R: decode(restore) FastLZ file
 a: encode(archive) OkumuraLZ file
 r: decode(restore) OkumuraLZ file
Example1: Kazuya Kazuya.lst
Example2: Kazuya -SA2 Kazuya.lst
Example3: Kazuya e Caterpillar.001.txt Caterpillar.001.txt.Lasse
Note1: Benchmark(HDD read speed is the nasty bottleneck):
 Kazuya(EN:37KB/clock, DE:88KB/clock) for 24.9GB(10.6GB Lasse) texts.
 Me machine is:
 Motherboard Name: Toshiba Satellite L305
 CPU Type: Mobile DualCore Intel Pentium, 2166 MHz (13 x 167)
 CPU Alias: Merom-1M
 L1 Code Cache: 32 KB per core
 L1 Data Cache: 32 KB per core
 L2 Cache: 1 MB (On-Die, ECC, ASC, Full-Speed)
 Bus Type: Dual DDR2 SDRAM
 Bus Width: 128-bit
 Real Clock: 333 MHz (DDR)
 Effective Clock: 666 MHz
Note2: Disastrous performance in case 256MB not fully physical!
Note3: Matches(hits) are overwritten to Kazuya.hits.Pattern?.html files.
Note4: Works both on UNIX(LF) and Windows(CRLF) text files.
Note5: Never forget the importance of defragmented_AND_grouped files located at
 fastest area of disk - first partition is faster than second one, etc.
Note6: In ANSI, clock is defined as '#define CLOCKS_PER_SEC 1000'.
Note7: Since Kazuya 13++:
 - limits(just skip longer ones) lines to 960 chars; OTHERWISE: HUGE TIME
 DELAYS due to recursive function;
 - shows hits to console too; MORE VIVID;
Note8: Since Kazuya 14:
 - No deletion of input file after compressing/decompressing;
Note9: During execution hitting a 'Esc' causes termination(i.e. skipping rest).
NoteA: This revision works with up to 127MB incoming(non-compressed) files,
 because it allocates 256MB of which one half is for incoming
 oher for outcoming file, i.e. decompression/compression is RAM to RAM.
NoteB: Charge(delivery) performance combines upload and decode performance.
NoteC: The two examples below show the need of one additional wildcard in
 order to match CR for Windows texts; end of line is LF(as in UNIX):
 Pattern(s) example: Pattern1: ########%
 Pattern1_NestedPattern1:
 Possible hit: NEW YORK
 Pattern(s) example: Pattern1: $$$$$$$$@
 Pattern1_NestedPattern1:
 Possible hit: Printing

Pattern(s) note: You may specify(four times) a main-pattern(case insensitive
 with wildcards '*' i.e. any character(s) or empty, also '@'
 i.e. any character or empty, also '#' i.e. any character
 and not empty, also '$' i.e. any ALPHA character
 and not empty, also '%' i.e. any NON-ALPHA character
 and not empty) with three nested-patterns(case
 sensitive and unexact), all four connected with AND.
 Due to different line endings(CRLF in Windows; LF in UNIX)
 you must add a '@' wildcard in place of CR: for example in
 case of searching for '*.pdf' write '*.pdf@'.
Pattern(s) example: Pattern1: *%take@%$$@
 Pattern1_NestedPattern1:
 Possible hit: ... is taken by
 Possible hit: ... would take it
 Note: First % is to avoid e.g. 'mis' prefix
 Second % is to avoid e.g. 'ing' suffix
Master-pattern note: It is case insensitive with wildcards '*','@','#','$','%'
 allowed. The purpose of this pattern is to
 decide whether a search for next patterns will be
 executed, it is applied on all lines i.e. the whole file.
 There must be at least one hit in order to execute search
 for next patterns.

Have a nice Kazuyaing.
For contacts: sanmayce@sanmayce.com
Sanmayce Svalqyatchx 'Kaze', 2010 May 24.

Allocated memory for DEcoded file in MB: 256
Kazuya: Can't open /? file.

D:_KAZE_G.S._Corpus>

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 9

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 10

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 11

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 12

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 13

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 14

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 15

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 16

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 17

D:_KAZE_G.S._Corpus>type Leprechaun.LOG
Leprechaun report:
A(not always THE) Binary-Search-Tree with the longest path(height, PEAK, number of levels):
]sysslade]
]swincian]
 [swedloff]
]surtaxez[
]suddenne]
]stongrly]
 [spellchk]
 [spammail[
 [shouzoug[
 [shotaike[
 [shitench[
]shahrani[
 [sgcenari]
]sessionx[
 [sedanais]
]schebaum[ROOT
]scaunele]
 [scappard]
]scachans[
 [santinha]
]sankhaya[
]saleeite]
 [saisihan]
Above Binary-Search-Tree with MaxPEAK = 13 has NODEs = 23 and LEAFs = 7
Legend:
At left side of the word - '[' means no left successor
At left side of the word - ']' means left successor exists
At right side of the word - ']' means no right successor
At right side of the word - '[' means right successor exists
Bytes per second performance: 37,522,449B/s
Words per second performance: 6,142,696W/s
Input File with a list of TEXTual Files: 293-TXTs_26GB.lst
Size of all TEXTual Files: 27,991,747,152
Word count: 4,582,451,898 of them 9,177,221 distinct
Number Of Files: 293
Number Of Lines: 424754717
Allocated memory in MB: 1950
Number Of Trees(GREATER THE BETTER): 2855919
Forest population(Hash Function Quality regarding Collisions i.e. Hash Table Utilization): 43%
Number Of Hash Collisions(Distinct WORDs - Number Of Trees): 6321302
Maximum Attempts to Find/Put a WORD into a Binary-Search-Tree: '13'
Total Attempts to Find/Put WORDs into Binary-Search-Trees: 4,746,283,042
Total Number of LEAFs in Binary-Search-Trees(GREATER THE BETTER): 4,361,992
Perfectly-Balanced-Binary-Search-Tree for MaxNODEs = 34 must have PEAK = 6 = rounding down of integer (1+lb(34))
Binary-Search-Tree(1st out of 1) with MaxNODEs = 34 has PEAK = 11 and LEAFs = 11
Binary-Search-Tree(1st out of 2) with MaxPEAK = '13' has NODEs = 23 and LEAFs = 7
Binary-Search-Tree(1st out of 3) with MaxLEAFs = 12 has NODEs = 27 and PEAK = 8
Words with length 01 occupy 0,033KB of 0,162KB given i.e. 19% utilization
Words with length 02 occupy 0,033KB of 0,162KB given i.e. 19% utilization
Words with length 03 occupy 0,040KB of 0,162KB given i.e. 24% utilization
Words with length 04 occupy 0,158KB of 0,646KB given i.e. 24% utilization
Words with length 05 occupy 0,487KB of 1,775KB given i.e. 27% utilization
Words with length 06 occupy 0,991KB of 3,549KB given i.e. 27% utilization
Words with length 07 occupy 1,431KB of 5,968KB given i.e. 23% utilization
Words with length 08 occupy 1,803KB of 7,581KB given i.e. 23% utilization
Words with length 09 occupy 1,643KB of 8,549KB given i.e. 19% utilization
Words with length 10 occupy 1,546KB of 8,065KB given i.e. 19% utilization
Words with length 11 occupy 1,317KB of 7,420KB given i.e. 17% utilization
Words with length 12 occupy 1,131KB of 6,130KB given i.e. 18% utilization
Words with length 13 occupy 0,945KB of 5,162KB given i.e. 18% utilization
Words with length 14 occupy 0,796KB of 4,033KB given i.e. 19% utilization
Words with length 15 occupy 0,662KB of 3,226KB given i.e. 20% utilization
Words with length 16 occupy 0,561KB of 2,904KB given i.e. 19% utilization
Words with length 17 occupy 0,461KB of 2,259KB given i.e. 20% utilization
Words with length 18 occupy 0,394KB of 1,613KB given i.e. 24% utilization
Words with length 19 occupy 0,335KB of 1,291KB given i.e. 25% utilization
Words with length 20 occupy 0,297KB of 1,130KB given i.e. 26% utilization
Words with length 21 occupy 0,266KB of 0,968KB given i.e. 27% utilization
Words with length 22 occupy 0,248KB of 0,807KB given i.e. 30% utilization
Words with length 23 occupy 0,222KB of 0,646KB given i.e. 34% utilization
Words with length 24 occupy 0,210KB of 0,484KB given i.e. 43% utilization
Words with length 25 occupy 0,194KB of 0,484KB given i.e. 40% utilization
Words with length 26 occupy 0,178KB of 0,323KB given i.e. 55% utilization
Words with length 27 occupy 0,164KB of 0,323KB given i.e. 50% utilization
Words with length 28 occupy 0,160KB of 0,323KB given i.e. 49% utilization
Words with length 29 occupy 0,150KB of 0,323KB given i.e. 46% utilization
Words with length 30 occupy 0,138KB of 0,162KB given i.e. 85% utilization
Words with length 31 occupy 0,134KB of 0,162KB given i.e. 82% utilization
Total pseudo(including hash table) memory utilization: 22%
Total real(wordlist's words VS allocated block) memory utilization: 47/1000
Used value for third parameter in KB: 5000
Use next time as third parameter: 4279-
Time for making unsorted wordlist: 746 second(s)
Time for sorting unsorted wordlist: 6 second(s)

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 18

#define ulPrime ((unsigned long) 0x00FF00F1)
#define ulBase ((unsigned long) 127)
 // 9,223,372,036,854,775,807
// 257^7 = 74,051,159,531,521,793
// 257^8 = 19,031,147,999,601,100,801
// 127^9 = 8,594,754,748,609,397,887
// 57^10 = 362,033,331,456,891,249
// 13^16 = 665,416,609,183,179,841
// 5^12 = 244,140,625
// 13^8 = 815,730,721

long KarpRabinKazeHits (char * pbTarget,
 char * pbPattern,
 unsigned long cbTarget,
 unsigned long cbPattern)
{
 unsigned int i;
 char * pbTargetMax = pbTarget + cbTarget;
 char * pbPatternMax = pbPattern + cbPattern;
 unsigned long ulBaseToPowerMod = 1;
 register unsigned long ulHashPattern = 0;
 unsigned long ulHashTarget = 0;
long hits = 0;
//unsigned long count;
 //char * buf1;
 //char * buf2;

 if (cbPattern > cbTarget)
 return(0);

 // Compute the power of the left most character in base ulBase
 //for (i = 1; i < cbPattern; i++) ulBaseToPowerMod = (ulBase * ulBaseToPowerMod);

 // Calculate the hash function for the src (and the first dst)
 while (pbPattern < pbPatternMax)
 {
 // Below lines give 366KB/clock for 'underdog':
 //ulHashPattern = (ulHashPattern*ulBase + *pbPattern);
 //ulHashTarget = (ulHashTarget*ulBase + *pbTarget);
 pbPattern++;
 pbTarget++;
 }
 // Below lines give 436KB/clock for 'underdog' + requirement pattern to be 4 chars min.:
 //ulHashPattern = ((*(long *)(pbPattern-cbPattern)) & 0xffffff00) + *(pbPattern-1);
 //ulHashTarget = ((*(long *)(pbTarget-cbPattern)) & 0xffffff00) + *(pbTarget-1);
 // Below lines give 482KB/clock for 'underdog' + requirement pattern to be 2 chars min.:
 //ulHashPattern = ((*(unsigned short *)(pbPattern-cbPattern)) | *(pbPattern-1));
 //ulHashTarget = ((*(unsigned short *)(pbTarget-cbPattern)) | *(pbTarget-1));
 // Below lines give 482KB/clock for 'underdog' + requirement pattern to be 2 chars min.:
 //ulHashPattern = ((*(unsigned short *)(pbPattern-cbPattern)) & 0xff00) + *(pbPattern-1);
 //ulHashTarget = ((*(unsigned short *)(pbTarget-cbPattern)) & 0xff00) + *(pbTarget-1);
 // Below lines give 605KB/clock for 'underdog' + requirement pattern to be 2 chars min.:
 //ulHashPattern = ((*(unsigned short *)(pbPattern-cbPattern))<<8) + *(pbPattern-1);
 //ulHashTarget = ((*(unsigned short *)(pbTarget-cbPattern))<<8) + *(pbTarget-1);
 // Below lines give 668KB/clock for 'underdog':
 ulHashPattern = ((*(char *)(pbPattern-cbPattern))<<8) + *(pbPattern-1);
 ulHashTarget = ((*(char *)(pbTarget-cbPattern))<<8) + *(pbTarget-1);

 // Dynamically produce hash values for the string as we go
 for (;;)
 {
 if ((ulHashPattern == ulHashTarget) && !memcmpKAZE(pbPattern-cbPattern, pbTarget-cbPattern, (unsigned int)cbPattern))
 // if (ulHashPattern == ulHashTarget) {
 //
 // count = cbPattern;
 // buf1 = pbPattern-cbPattern;
 // buf2 = pbTarget-cbPattern;
 // while (--count && *(char *)buf1 == *(char *)buf2) {
 // buf1 = (char *)buf1 + 1;
 // buf2 = (char *)buf2 + 1;
 // }
 //
 // if (*((unsigned char *)buf1) - *((unsigned char *)buf2) == 0) hits++;
 // }
 hits++;
 //return((long)(pbTarget-cbPattern));

 if (pbTarget == pbTargetMax)
 return(hits);

 // Below line gives 482KB/clock for 'underdog' + requirement pattern to be 2 chars min.:
 //ulHashTarget = ((*(unsigned short *)(pbTarget+1-cbPattern)) | *pbTarget);
 // Below line gives 436KB/clock for 'underdog' + requirement pattern to be 4 chars min.:
 //ulHashTarget = ((*(long *)(pbTarget+1-cbPattern)) & 0xffffff00) + *pbTarget;
//; Line 696
// movsx esi, BYTE PTR [ebx]
// mov ecx, DWORD PTR [edx+1]
// and ecx, -256 ; ffffff00H
// add ecx, esi
 // Below line gives 482KB/clock for 'underdog' + requirement pattern to be 2 chars min.:
 //ulHashTarget = ((*(unsigned short *)(pbTarget+1-cbPattern)) & 0xff00) + *pbTarget;
//; Line 691
// movsx esi, BYTE PTR [ebx]
// xor ecx, ecx
// mov cx, WORD PTR [edx+1]
// and ecx, 65280 ; 0000ff00H
// add ecx, esi
 // Below line gives 605KB/clock for 'underdog' + requirement pattern to be 2 chars min.:
 //ulHashTarget = ((*(unsigned short *)(pbTarget+1-cbPattern))<<8) + *pbTarget;
 // Below line gives 668KB/clock for 'underdog':
 ulHashTarget = ((*(char *)(pbTarget+1-cbPattern))<<8) + *pbTarget;
//; Line 718
// movsx ecx, BYTE PTR [eax+1]
// movsx edx, BYTE PTR [ebp]
// shl ecx, 8
// add ecx, edx
 // Below line gives 366KB/clock for 'underdog':
 //ulHashTarget = (ulHashTarget - *(pbTarget-cbPattern)*ulBaseToPowerMod)*ulBase + *pbTarget;
 pbTarget++;
 }
}

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 19

Core i7 chip(731 million transistors) – the current dominator; plus heart-touching-data-storages:

SSD drives – simply the future:

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 20

Triple channel DDR3 RAM – three pieces of beauty:

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 21

Benchmarks – single thread: what a shame:

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 22

CPUs – gone with the wind like an old newspaper:

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 23

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 24

Intel claims 230MB/s read, (benchmark tools say 214MB/s read) – already on market:

'Monstrous Dumpers' package, revision 13-, (Downloaded from: www.sanmayce.com): a ‘_KAZE_G.S._Corpus(LZMA)_2010-Jun-06’ short overview; page 25

More SSD Exuberance – wow-things or as they said ‘MIND BLOWING’:

Fusion ioDrive SPECIFICATIONS:

NAND Type: Single Level Cell (SLC)
Read Bandwidth: 700 MB/s (random 16K)
Access Latency: 50μs
Bus Interface: PCI-Express x4
Operating Systems: Microsoft 64-Bit Windows(64-Bit Windows XP, Vista, Server 2003 & 2008)

* * *

With the ioDrive Duo, it is now possible for application, database and system
administrators to get previously unheard-of levels of performance, protection and
capacity utilization from a single server. Performance for multiple ioDrive Duos scales
linearly, allowing any enterprise to scale performance to six gigabytes per-second
(Gbytes/sec) of read bandwidth and over 500,000 read IOPS by using just four ioDrive
Duos.

©2007 Fusion-io, All Rights Reserved.

W
W

W
.

F
U

S
I

O
N

I
O

.
C

O
M

Fusion-io’s Solid State Storage—A New Standard
for Enterprise-Class Reliability

©2007 Fusion-io, All Rights Reserved.

W
W

W
.

F
U

S
I

O
N

I
O

.
C

O
M

©2007 Fusion-io, All Rights Reserved.

ioDrive™

W
W

W
.

F
U

S
I

O
N

I
O

.
C

O
M

Fusion-io’s Solid State Storage—A New Standard for Enterprise-Class Reliability
Fusion-io offers solid state storage solutions based on NAND flash that provide a level of integrity and availability for

mission-critical data that exceeds today’s solid state storage solutions and significantly surpasses that of enterprise-class

rotating magnetic storage devices.

With throughput and seek times many times faster than the fastest disk arrays, it is little wonder that enterprise data

centers have been keen to include NAND flash as part of their server infrastructure. The primary reason NAND flash has not

been widely adopted in the computer industry is its reputation for unreliability. There is a long-standing view that NAND

flash storage works well for non-mission-critical applications, such as media storage devices (where the occasional bit error

generally translates into a slight audio hiss or a stray errant pixel in a video), but cannot be relied upon for applications

where a bit error could crash an operating system or compromise the integrity of critical data.

System architects face a number of storage-related challenges and NAND flash technology presents its own set of unique

problems. But Fusion-io has developed patent-pending techniques to create NAND flash-based storage with reliability

equal to or exceeding that of disk-based storage. This paper describes several inventions and advancements Fusion-io has

introduced to ensure data is not corrupted or lost. Additionally, this paper discusses the probability of catastrophic storage

device failure and how Fusion-io’s architecture ensures predicable, controlled management of early device failure, long-term

device attrition and data changes due to external and data transport interference.

NAND Flash
Flash memory chips are a non-volatile storage medium (i.e., they can retain their information even in the absence of

power). The most common types of flash chips are silicon-based NOR and NAND, named after the types of logic gates

used in their design. NAND flash, introduced in 1989, has become the most commonly used type of flash chip, due to its

quicker write speed. Flash memory continues to grow in popularity as its price steadily declines, its storage capacity

increases, and its physical size continues to decrease.

In Fusion-io’s storage devices, NAND flash chips are stacked several at a time (to increase density), operated in parallel (to

increase throughput) and mounted on a printed circuit board (PCB) that plugs into a PCI-Express (PCIe) slot on the server

or in the CPU. The flash media is integrated with the controller onto a single PCI-Express card.

NAND flash, as a storage medium, offers a number of benefits in comparison to rotating magnetic storage devices (aka

HDD, Hard Disk Drives). NAND flash has no moving parts and is therefore significantly less prone to shock or movement

disturbance. It is a high speed solution in both latency and throughput. Temperature and humidity resistance mean that it

can operate in a number of different environments. Finally, NAND flash consumes significantly less power than rotating

magnetic storage devices, particularly when you take into account secondary power requirements for device cooling.

©2007 Fusion-io, All Rights Reserved.

W
W

W
.

F
U

S
I

O
N

I
O

.
C

O
M

©2007 Fusion-io, All Rights Reserved.

W
W

W
.

F
U

S
I

O
N

I
O

.
C

O
M

However, NAND flash does introduce a number of potential failure points including:

• Media – Media failures can occur on the NAND flash chips themselves.

• Transport – Transport errors can occur anywhere along the path carrying data from the CPU through to the
NAND flash chips.

• Management – There is a small chance that management problems can occur within the logic of the device itself.
The code that controls the operation can contain technical problems that can result in data failures.

• External – External problems can affect any part of the process.

• Device Failure – Catastrophic hardware failure can also occur. This includes the possibility of internal
short circuits and open circuits within the memory array itself.

Protecting the Data
Implementing a variety of design and architectural strategies for protecting data integrity, Fusion-io’s NAND flash devices

greatly exceed the reliability of rotating magnetic media storage devices, while providing performance that is orders of

magnitude better. Fusion-io protects your data at every step, ensuring that nothing is lost or corrupted in transit or on

the media.

Data Integrity
Data integrity means having a high degree of confidence that what you put into a storage system is exactly what you

get out when you request that data and it is the most important function of a storage system. While being moved from

a computer’s RAM or CPU to the Fusion-io device, several proven industry-standard approaches are used to ensure data

integrity. The CPU, chipset, and RAM use SECDED (Single Error Correct Double Error Detect) or chipkill (method for

on-the-fly replacement of a failed chip) to ensure accuracy. Once data is written to the storage medium, it is again

checked for accuracy.

When data is read from the storage medium, error correction techniques are again employed to ensure that the data

being retrieved is correct. The device can correct a substantial portion of the data being read. NAND’s reputation for

unreliability is based on studies that show potential data loss without utilizing error correction – or less correction than

that employed by the Fusion-io device. Using the methods described here, Fusion-io devices can produce results that

exceed target error probability by about four times. Fusion-io’s devices also use a patent-pending approach when writing

data, which allows the data’s path to be reconstructed from information generated during the write process.

Data Availability
Data availability means having a high degree of confidence that data stored will not be lost, either while in transition to

the storage device or after it has been written to the media.

Fusion-io employs a wide variety of techniques to overcome some of the common problems associated with data availability

in general, and also addresses some that are particular to NAND flash as a storage medium. Generally speaking, NAND

flash is substantially more reliable than rotating magnetic media. It eliminates the chance of mechanical failure

©2007 Fusion-io, All Rights Reserved.

W
W

W
.

F
U

S
I

O
N

I
O

.
C

O
M

(the failure associated with moving parts). There is, however, a chance of bad chips and chip wear-out. Fusion-io

mitigates this risk using a variety of approaches.

Fusion-io’s redundant, patent-pending approach to writing data allows data to be rebuilt at a very high rate of speed,

ensuring rapid data availability. Data is also regularly moved and checked for accuracy to ensure that it does not deteriorate

on the flash chip. This also consolidates good data and reallocates space on the drive to ensure greater data availability.

This system also spreads data evenly across the device, ensuring uniform wear across all chips.

Additionally, Fusion-io uses multiple error correction code (ECC) techniques to identify and correct faulty data. Using

ECCs, the device controller can correct up to 11 missing or incorrect bits out of every 240 bytes. One of the biggest

benefits of ECC routines is that it they allow the device to predict the likelihood of failure on individual chips. When a

particular area of a chip has passed a set unreliability threshold, its data can be moved and that are will be taken out

of service. The controller continues to identify and remove bad blocks, regions of chips or even entire chips so that

ordinary wear-out does not cause catastrophic failure rather a very predictable wear-out.

Device Longevity
The majority of this paper has concentrated on NAND flash in an enterprise-class storage device, and how to leverage

its strengths while overcoming its weaknesses. NAND flash, however, is only part of a Fusion-io’s storage device. The

flash chips reside on a PCIe adapter card that has a number of other parts as well, all of which are susceptible to failure.

The life of a NAND flash storage device can be estimated by examining the failure rate of its component parts. Wear-out

is generally a function of having lost enough storage cells that both capacity and reliability drop below acceptable thresholds.

This can be assessed by evaluating and keeping a record of the amount of errors detected at each physical location.

NAND flash wears out at a predictable rate as described by the formulas below. Effective use of wear-leveling strategies

employed by Fusion-io can significantly improve the life expectancy of its drives. Please note that the formulas are

applied to both MLC and SLC NAND-based non-volatile memory technologies. Single-Level Cell (SLC) NAND and Multi-

Level Cell (MLC) NAND offer capabilities that serve two very different types of applications – respectively, those requiring

high performance at an attractive cost-per-bit and those seeking even higher performance over time, that are less cost-sensitive:

Average-lifetime = lifetime / read-write- ratio

TYPE / WRITE DUTY AVERAGE ESTIMATED LIFETIME FORMULA

SLC flash @ 40% write duty

MLC flash @ 20% write duty

MLC flash @ 40% write duty

25 calendar years

10 calendar years

5 calendar years

©2007 Fusion-io, All Rights Reserved.

W
W

W
.

F
U

S
I

O
N

I
O

.
C

O
M

Average estimated lifetime based on Fusion-io lab testing
The read/write ratio is difficult to predict, and will vary considerably from environment to environment. As a point of

reference, the International Disk-drive Equipment and Materials Association (IDEMA), an industry trade group that publishes

storage device standards, recommends a read/write ratio of 60%/40% for its server-class device reliability testing

(IDEMA Standards, Document R3-98).

Flashback Protection
Enterprises have long sought to take advantage of the speed, size, low-power and high-performance of NAND Flash

because of its potential to change the way they manage large amounts of active data. The primary objection to NAND

flash has been the reliability of the medium. Fusion-io has eliminated this barrier by inventing a revolutionary self-healing

technology, known as Flashback Protection, in our controllers that instantaneously restores, corrects and resurrects lost

data in the flash-based storage sub-system. Flashback Protection is accomplished by collectively using advanced bit

error correction, proactive data integrity monitoring of stored data and the recent addition of a dedicated chip to repair

failed devices.

Fusion-io is the first and only company to bring RAID-class redundancy and reliability using Flashback Protection down

to the card level. The Flashback Protection system allows users to diagnose and correct system errors. Fusion-io integrates

dedicated NAND flash chips, which offer information that enables the detection of single bit errors. This technique eliminates

data loss due to chip failures and extends the usable lifetime of the NAND flash-based storage device. The NAND flash

chips on Fusion-io’s products contain an innovative storage architecture that enable it to deliver the performance, and

now the reliability, of a storage area network (SAN) at a fraction of the power, size and cost of traditional disk arrays.

Controlled Predictable Usage Versus Catastrophic Failure
Among the greatest reliability benefits of the Fusion-io storage device is its ability to:

• Restore and Protect data

• Monitor and predict media wear-out

• Correct bad data as necessary

• Take blocks out of service when their failure rate becomes unacceptable

• Replace bad chips on-the-fly

• Move the data to a known good location (and update corresponding mapping information)

Data stored on the Fusion-io medium is double protected using both ECCs and parity data on the redundant chip.

The net effect is that wear-out of the device, instead of being catastrophic, is predictable and incremental.

©2007 Fusion-io, All Rights Reserved.

W
W

W
.

F
U

S
I

O
N

I
O

.
C

O
M

A Fusion-io device provides advanced warning prior to wear-out. Fusion-io supports today’s monitoring management

functions to measure and report on the device’s status and usable life. In almost all cases, device upgrade is a smooth

and predictable process, rather than an emergency situation.

Fusion-io protects your data at every stage of its path from your applications to the NAND flash storage medium, ensuring

that nothing is lost or corrupted along the way or while the data is being stored. Data is checked multiple times, using

several error detection methods. Once it reaches the storage medium, it is stored with robust error correction encoding

that lets the flash device not only identify but correct bit errors. Fusion-io’s data integrity design target is a 1 in 1030

probability of undetected bad data and a 1 in 1020 probability of uncorrectable data, as compared to a 1 in 1016

probability of undetected or uncorrectable errors for rotating magnetic storage devices.

Conclusion
Now with Fusion-io’s comprehensive approach to data integrity, it is safe to exploit the exponential performance gains

and many other benefits offered by NAND flash storage. The storage architecture pioneered by Fusion-io ensures pre-

dictable, controlled mitigation of early device failure, long-term device attrition and data changes due to external and

data transport interference—issues that have up to now limited the adoption of NAND flash-based storage at the

enterprise level. Fusion-io’s NAND flash devices exceed the reliability of rotating magnetic media storage devices while

providing an order of magnitude performance improvement.

Flash Back Block Diagram

ioDrive Controller
NAND Flash Memory

10Gbps

PCI-E
Controller

Flash Block
Manager

Redundant
Chip Logic Redundancy

Control Data

Storage Flash
Memory
Data + ECC

11-bit ECC
Data Logic

Flash Memory
Controller

x4 Lanes

©2007 Fusion-io, All Rights Reserved.

©2009 Fusion-io, All Rights Reserved.

ioDrive™

W
W

W
.

F
U

S
I

O
N

I
O

.
C

O
M

Robert Brumfield
Fusion Public Relations
212.651.4215
robert.brumfield@fusionpr.com

Fusion-io Announces the ioDrive Duo—The World’s Fastest and Most Innovative SSD

PCI Express, server-based solid-state storage offering sets a new standard for enterprise
application-centric storage, with up to 640 gigabytes of capacity and

1.5 gigabytes per-second of sustained throughput

SALT LAKE CITY - March 11, 2009 - Fusion-io, the leader in solid-state architecture and high-
performance I/O solutions, today announced the ioDrive Duo, which doubles the slot capacity of
Fusion-io’s successful PCI Express-based ioDrive storage solution. The new ioDrive Duo is the
market’s fastest and most innovative server-based solid-state storage solution.

With the ioDrive Duo, it is now possible for application, database and system administrators to
get previously unheard-of levels of performance, protection and capacity utilization from a single
server. Performance for multiple ioDrive Duos scales linearly, allowing any enterprise to scale
performance to six gigabytes per-second (Gbytes/sec) of read bandwidth and over 500,000 read
IOPS by using just four ioDrive Duos.

“Many database and system administrators are finding that SANs are too expensive and don’t
meet performance, protection and capacity utilization expectations,” said David Flynn, CTO of
Fusion-io. “This is why more and more application vendors are moving toward application-centric
solid-state storage. The ioDrive Duo offers the enterprise the advantages of application-centric
storage without application-specific programming.”

ioDrive Duo Product Details

The following specifications describe the physical and performance characteristics of the ioDrive Duo.

Performance

Based on PCI Express x8 or PCI Express 2.0 x4 standards, which can sustain up to 20 gigabits
per-second of raw throughput, the ioDrive Duo has more than enough bandwidth to obtain indus-
try-leading performance from a single card. The ioDrive Duo can easily sustain 1.5 Gbytes/sec of
read bandwidth and nearly 200,000 read IOPS. Its performance metrics are as follows:

• Sustained read bandwidth: 1500 MB/sec (32k packet size)
• Sustained write bandwidth: 1400 MB/sec (32k packet size)
• Read IOPS: 186,000 (4k packet size)
• Write IOPS: 167,000 (4k packet size)
• Latency < 50 μsec

©2009 Fusion-io, All Rights Reserved.

W
W

W
.

F
U

S
I

O
N

I
O

.
C

O
M

Reliability

The ioDrive Duo offers unmatched solid-state protection for data integrity and reliability with
triple redundancy for a single storage component.

• Multi-bit error detection and correction
• Patent-pending Flashback protection, offering chip-level N+1 redundancy and

on-board self-healing so that no servicing is required
• Optional RAID-1 mirroring between two ioMemory modules on the same ioDrive Duo,

offering complete redundancy on a single PCIe card

Capacity

The ioDrive Duo comes in the following capacities:

• 160 Gbytes
• 320 Gbytes
• 640 Gbytes
• 1.28 TB (second half of 2009)

The ioDrive Duo will be available in April 2009. To find out more about how this and
Fusion-io’s other enterprise solid-state storage products can benefit your organization,
please visit www.fusionio.com.

About Fusion-io

Fusion-io is a leading provider of enterprise solid-state technology and high-performance I/O
solutions. The company’s solid-state storage technology closes the gap between processing
power and storage needs delivering breakthrough performance at a fraction of the cost of
traditional disk-based storage systems. The result is a world of possibilities for performance-
starved applications.

©2008 Fusion-io, All Rights Reserved.
©2009 Fusion-io, All Rights Reserved.

W
W

W
.

F
U

S
I

O
N

I
O

.
C

O
M

NAND Type

Write Bandwidth

Read Bandwidth

IOPS*

Access Latency

Bus Interface

Weight

Operating Systems

Wear Leveling and
Sophisticated ECC
(@ 5-TB write-erase / day)

* Performance achieved using multiprocessor enterprise server ** 64-Bit Windows XP, Vista, Server 2003 & 2008

ioDrive Duo Capacity

Single Level Cell (SLC) Single Level Cell (SLC) Multi Level Cell (MLC)
1.1 GB/s (32k packet size) 1.4 GB/s (32k packet size) 1.0 GB/s (32k packet size)

1.5 GB/s (32k packet size) 1.5 GB/s (32k packet size) 1.4 GB/s (32k packet size)

200,832 reads (4k packet size) 185,022 reads (4k packet size) 126,601 reads (4k packet size)
132,118 writes 4k packet size) 167,784 writes (4k packet size) 180,530 writes (4k packet size)

50μs Read 50μs Read 80μs Read

PCI-Express x8 and PCI Express 2.0 x4 PCI-Express x8 and PCI Express 2.0 x4 PCI-Express x8 and PCI Express 2.0 x4

Less than 10 ounces Less than 10 ounces Less than 10 ounces

Microsoft Windows**, Open Solaris 10 Microsoft Windows**, Open Solaris 10 Microsoft Windows**, Open Solaris 10
Solaris 10, RHEL 4 & 5; SLES 9 & 10 Solaris 10, RHEL 4 & 5; SLES 9 & 10 Solaris 10, RHEL 4 & 5; SLES 9 & 10

24yrs 48yrs 16yrs

160GB 320GB 640GB

> Sustain over a GB/sec of bandwidth
> Easily RAID multiple ioDrive Duo’s
> OS support for Windows, Linux & Solaris

Full height, 3/4 length PCI Express 2.0
PCI Express electromechanical spec 2.0

PCI Express power spec 2.0

Form Factor
Connectivity
Power

STANDARDS
US / Canada
Europe
Japan
Taiwan
New Zealand /Australia

RoHS

FCC Part 15, ICES-003, Class A
2004/108/EC EMC Directive CE Mark;

VCCI, Class A
BSMI, Class A

AS/NZS 3548 Class A

R5 (Directive 2002/95/EC)

AGENCY

* Temperature derated 1 C per 1000 ft elevation above sea level

Temperature (°C)*

Air Flow (LFM)
Humidity (%)
Altitude (ft)

Operational
Non-operational

Non-condensing
Operational

Non-operational

Min
0

- 40
300

5

Max
55
70

95
10,000
30,000

ENVIRONMENTAL SPECIFICATIONS

100% Assembled in the U.S.A.

©2008 Fusion-io, All Rights Reserved.
©2008 Fusion-io, All Rights Reserved.

W
W

W
.

F
U

S
I

O
N

I
O

.
C

O
M

NAND Type

Write Bandwidth

Read Bandwidth

IOPS*

Access Latency

Bus Interface

Weight

Operating Systems

Wear Leveling and
Sophisticated ECC
(@ 5-TB write-erase / day)

* Performance data provided by Medusa Labs. ** 64-Bit Windows XP, Vista, Server 2003 & 2008

ioDrive Capacity

Single Level Cell (SLC) Single Level Cell (SLC) Multi Level Cell (MLC)
550 MB/s (random 16K) 600 MB/s (random 16K) 500 MB/s (random 8K)

700 MB/s (random 16K) 700 MB/s (random 16K) 700 MB/s (random 32K)

102,000 (random 4k reads) 104,400 (random 4k reads) 60,000 (random 4k reads)

91,000 (random 4k writes) 103,925 (random 4k writes) 79,000 (random 4k writes)

88,000 (70/30 random 4k mix) 95,000 (70/30 random 4k mix) 65,000 (70/30 random 4k mix)

50μs Read 50μs Read 80μs Read

PCI-Express x4 PCI-Express x4 PCI-Express x4
Less than 2 ounces Less than 2 ounces Less than 2 ounces

RHEL 4 & 5; SLES 9 & 10 RHEL 4 & 5; SLES 9 & 10 RHEL 4 & 5; SLES 9 & 10
Microsoft 64-Bit Windows** Microsoft 64-Bit Windows** Microsoft 64-Bit Windows**

24yrs 48yrs 16yrs

80GB 160GB 320GB

> Less than 50 μs latency
> Easily RAID multiple ioDrives together
> Managed like simple block storage

Low profile PCI Express x4 slot (spec 1.1)
PCI Express x4 (electromechanical spec 1.1)

PCI Express x4 (power spec 1.1)

Form Factor
Connectivity
Power

STANDARDS
US / Canada
Europe
Japan
Taiwan
New Zealand /Australia

RoHS

FCC Part 15, ICES-003, Class A
2004/108/EC EMC Directive CE Mark;

VCCI, Class A
BSMI, Class A

AS/NZS 3548 Class A

R5 (Directive 2002/95/EC)

AGENCY

* Temperature derated 1 C per 1000 ft elevation above sea level

Temperature (°C)*

Air Flow (LFM)
Humidity (%)
Altitude (ft)

Operational
Non-operational

Non-condensing
Operational

Non-operational

Min
0

- 40
300

5

Max
55
70

95
10,000
30,000

ENVIRONMENTAL SPECIFICATIONS

US / Canada

Europe

UL60950, CSA C22.2 No.60950-1-03

TUV EN60950-1:2001; 3N50825-1:

SAFETY

100% Assembled in the U.S.A.

